Computing social constructions: visual analytics for text-intensive research on immigration

Serperi Sevgür¹, Mariano Maisonnave^{2,3}, Eugena Kwon¹, Evangelia Tastsoglou¹, Evangelos Milios², Ana Maguitman³ and Axel Soto³

INTRODUCTION

MOTIVATION

Facilitate text-intensive research in Social Sciences.

BACKGROUND

 Large amounts of text need to be retrieved, organized, summarized, and thematized.

OBJECTIVE

Develop Natural Language Processing (NLP) and Visual Analytics (VA) tools for social scientists to manage large amounts of text-based data.

SIGNIFICANCE

- Interdisciplinary approach that will move the state-of-the-art in NLP and VA.
- Enable Social Scientists to tap into the semantics of text corpora that are orders of magnitude larger than those available in the past.

SOCIAL SCIENCE

SOCIAL SCIENCE RESEARCH QUESTIONS:

- 1. Examine shifting representations of refugees in Canadian mainstream newspapers.
- 2. Examine the representation of Displaced Persons (DP) in the media after the Second World War.

METHOD: Content Analysis: OR Discourse Analysis:

To uncover Implicit assumptions, or language and power nexus. **Steps:**

1. Retrieve relevant data within a time frame

Organization of resultant themes and their analysis in relation to theoretical framework.

TRADITIONAL APPROACH FOR RETRIEVAL IN TEXT-INTENSIVE RESEARCH

Figure 1: Traditional approach.

- Feed keywords to a search engine, which returns a huge collection of unlabeled documents from two data sources.
- 2. The user reads the unlabeled documents to find the relevant ones (discarding the irrelevant ones).

PROPOSED APPROACH FOR RETRIEVAL IN TEXT-INTENSIVE RESEARCH

Figure 2: Proposed approach.

- 1. The documents are the input to a machine learning system that creates a vector representation for each article.
- 2. Predictive model suggests relevant articles. User dis/approves the suggestions. Re-training improves the understanding of a relevant article.
- 3. The system returns a set of articles that are —with a high level of confidence—relevant to the research question.

RESULTS

Short-coming of the traditional approach:

High numbers of irrelevant articles.

- May not tap into all possible keywords thus limiting the scope of the research process.
- Manual task (time and energy).
- IV. No learning.

Research Question 2 Period: 1945-1967

Traditional Approach (keywords: DP and Canada)

irrelevants) <u>Time</u>: 6 min per article (203.8 hs)

Article revised: 2,038

(522 relevant 1,516

Articles revised: 2+ million Time: 10hs per iteration (6.3% increase in precision for our last labeling round)

Our Approach

Advantages of our approach:

- Document representation is semanticsdetects relevant documents regardless of the vocabulary used in it.
- II. This set of relevant articles is generated automatically (built), so not bounded in size.
- III. I & II allow us to explore new research questions and answer those that have not been previously asked.
- IV. Frequent re-training increases relevance ratio, time efficiency and saves effort.

FUTURE WORK

Develop NLP/VA tools to address the coding process, i.e. organize and thematize using:

- topic modeling.
- clustering.
- diachronic word representations.

THE TOOL IS RESEARCH-QUESTION INDEPENDENT

Conseil de recherches er

